|
Sequid TDR阻抗測試方案(一)
寬帶阻抗受控系統(tǒng)的實(shí)現(xiàn)給*電子構(gòu)建部件——印刷電路板(PCB)的設(shè)計(jì)師、制造商和質(zhì)量保證管理人員提出了艱巨的挑戰(zhàn)。這個挑戰(zhàn)不是源于缺乏電磁設(shè)計(jì)知識,而且源于PCB行業(yè)中巨大的價格壓力:也就是說,在開發(fā)人員看來完全適合GHz范圍時鐘速率的理想射頻(RF)基材幾乎沒有使用過。 與此相反,在整個基材中介電常數(shù)(DC)不均勻的低成本FR4材料倒是經(jīng)常使用。另外,將核心材料和半固化片壓合成多層PCB經(jīng)常導(dǎo)致幾何上的不勻稱,進(jìn)一步增加了不確定性的來源。然而,為了滿足規(guī)定的容差,許多PCB制造商提供對線路阻抗的檢查服務(wù),繼而要求額外的阻抗測試板。這些測試板通常位于PCB邊緣,因此只能部分代表分布在整個生產(chǎn)面板上的實(shí)際感興趣傳輸線的特性。在最壞的情況下,被測的測試板可能在規(guī)定范圍內(nèi),但實(shí)際感興趣的傳輸線卻不滿足要求。 阻抗波動經(jīng)常是不可容忍的 除了材料和生產(chǎn)工藝的特殊變化外,設(shè)計(jì)參數(shù)變化(比如層的改變,到GND平面、PCB邊界或其它傳輸線的距離太短)也時有發(fā)生,最終導(dǎo)致不可容忍的傳輸線阻抗波動。阻抗波動的后果是時鐘沿劣化,出現(xiàn)碼間干擾,進(jìn)而造成不可接受的誤碼率,最終導(dǎo)致性能劣化甚至系統(tǒng)故障。 通過時域反射法(TDR)能以很高的精度確定線路阻抗。TDR技術(shù)從20世紀(jì)70年代就開始使用了,主要用于檢測地下或海底電纜中發(fā)生的故障。圖1顯示了基于TDR技術(shù)的阻抗測量裝置的框圖。TDR本身只包含一個電壓階躍發(fā)生器和帶數(shù)據(jù)采集單元的寬帶采樣器。
圖1:一個基于TDR技術(shù)的阻抗測量系統(tǒng)框圖。(所有照片來自Sequid) 基本的測量原理是這樣的:電壓發(fā)生器產(chǎn)生一個階躍信號,通過適配器、電纜和探針傳到待測設(shè)備(DUT)。當(dāng)在待測設(shè)備的整個長度上時發(fā)生相互作用時,信號將經(jīng)歷部分反射,并傳回檢測器,從而實(shí)現(xiàn)待測設(shè)備波形阻抗的空間測量。許多人從雷達(dá)應(yīng)用中了解這種基本原理,因此也常把TDR稱為電纜雷達(dá)。 階躍信號的上升時間tr確定了空間分辨率,因此應(yīng)該盡可能短(對于Sequid DTDR-65來說,tr≈ 65ps,因此空間分辨率大約為5mm)。發(fā)生器和采樣器(其模擬輸入帶寬至少是10GHz)之間的同步對于低噪聲工作(即抖動值只有幾個ps)來說至關(guān)重要。最理想的是使用“真正直通的”采樣器,不需要外部的信號分離器或耦合器。這種好處是顯而易見的,因?yàn)閷拵盘柗蛛x器通常是阻性的,會增加插損和噪聲。*,TDR儀器還要有一個數(shù)據(jù)記錄單元,這個單元通常是用微處理器或FPGA實(shí)現(xiàn)。 高頻TDR設(shè)備正常情況下并不使用實(shí)時采樣技術(shù),而是使用順序或隨機(jī)的采樣技術(shù)。與頻閃儀相似,這些設(shè)備憑借合理的技術(shù)可以記錄快速變化的周期性信號。數(shù)據(jù)處理和可視化任務(wù)一般在PC上執(zhí)行,可完全集成在高端儀器中,或通過USB或以太網(wǎng)連接。 測量物體到TDR的適配是一個要求很嚴(yán)的任務(wù)。舉例來說,差分阻抗測量必須使用高精度的相位匹配電纜和探針。如果不能滿足這個要求,偶數(shù)模式和奇數(shù)模式轉(zhuǎn)換將降低測量精度。另外,探針的頭應(yīng)該設(shè)計(jì)得與待測設(shè)備阻抗相匹配,才能實(shí)現(xiàn)可能*精度的測量。 市場上的不同系統(tǒng)
在越來越快的數(shù)字世界中,線路阻抗的測量業(yè)已表明是目前最重要的TDR應(yīng)用。圖2顯示了對無干擾(綠色曲線)和有干擾(紅色曲線)傳輸線的這種空間分辨式測量例子。 只有傳輸路徑上所有元件(不僅包括蝕刻線,而且包括電纜、連接器甚至集成電路中的終端電阻)都是阻抗匹配的,才能在發(fā)送器和接收器之間實(shí)現(xiàn)無反射的信號傳輸,從而得到*的比特率。因此,在評估差分和單端線的信號完整性時阻抗控制是一個很重要的因素。
開發(fā)人員和制造商可以從大量不同類型的差分TDR系統(tǒng)(DTDR)中選擇一種用于阻抗控制:從*成本效益的系統(tǒng)到特別昂貴的系統(tǒng)。一些*的測量技術(shù)制造商提供高精度的高端TDR系統(tǒng)。這些系統(tǒng)可以在高速示波器領(lǐng)域找到,一般都結(jié)合了必要的附件,如(D)TDR探針。這些設(shè)備非常適合用來測量高達(dá)20Gbit/s及以上的傳輸系統(tǒng)。然而對高端設(shè)備制造商來說,阻抗控制似乎只是一個利基市場。因此他們不提供專用的工業(yè)化解決方案,潛在用戶在達(dá)到最終的“阻抗測量”目標(biāo)之前很快會迷失在無數(shù)普通的射頻測量技術(shù)之中。此外,由于其高性能和通用性,所有這些系統(tǒng)都屬于高價格領(lǐng)域,這使得投資缺乏吸引力,特別是如果TDR不是持續(xù)使用時。
在工業(yè)和特殊產(chǎn)品測量技術(shù)領(lǐng)域可以發(fā)現(xiàn)一些通用性較低的TDR。在過去二十年中這些領(lǐng)域已經(jīng)建立起了特定的標(biāo)準(zhǔn)程序。這些設(shè)備及相關(guān)軟件針對測量測試板阻抗進(jìn)行了優(yōu)化,在許多PCB制造商那里都有部署。然而,這些TDR不太適合用于PCB內(nèi)部隨機(jī)傳輸線的設(shè)計(jì)與測試,理由是缺少合適的探針——更糟糕的是——太慢的信號上升時間tr導(dǎo)致太小的信號帶寬,繼而只允許對最小長度約10cm的線進(jìn)行表征。
作為第三個版本,還有“自我制作的”解決方案。這方面市場上有為數(shù)不多的*成本效益的(D)TDR設(shè)備。這樣進(jìn)一步購買組件(TDR探針和相位調(diào)整電纜)一般就能滿足技術(shù)上的先決條件。不過在這種情況下,必須在數(shù)據(jù)記錄、誤差減小、阻抗計(jì)算和結(jié)果歸檔等方面開發(fā)合適的軟件,以便可以追問源自某個來源的解決方案最終并不具有更高的成本效益和安全性。
Sequid GmbH公司最初開發(fā)過高分辨率和高精度的TDR系統(tǒng),用于判斷魚肉的質(zhì)量。在與德國PCB制造商Elekonta Marek GmbH的合作過程中,現(xiàn)有的基本技術(shù)進(jìn)一步發(fā)展為很高性能的系統(tǒng)(Sequid DTDR-65),能夠滿足阻抗控制測量的所有需求。這是一種高穩(wěn)定的差分時域反射計(jì),適合速率高達(dá)10Gbit/s的差分和單端傳輸線的阻抗測量。這種儀器具有65ps的階躍信號發(fā)生器,因此支持對測試板和實(shí)際電路的高分辨率測量。另外,DTDR-65具有特別好的抖動性能(Jrms<500fs),而這種性能通常是高端設(shè)備才有的。
同時開發(fā)的軟件解決方案能夠讓非射頻專家也能順利完成阻抗的測量。這種解決方案不僅包含基本功能(比如設(shè)備控制),還包含用于顯示線路阻抗的直觀可操作功能。容差模板使得做出通過/失敗(PASS/FAIL)聲明非常簡單。下面介紹了一些簡單的應(yīng)用例子。 圖3呈現(xiàn)的是RG 405同軸電纜的反射圖,其中的同軸電纜分別按照組裝規(guī)范(1)和沒有按照組裝規(guī)范(2)裝配了SMA連接器。兩種RG 405電纜的線路阻抗Z0≈51.5Ω,連接器區(qū)域的過渡非常明顯。在錯誤安裝連接器的情況下,電容下降(朝低阻抗變形)是可見的。當(dāng)外部和內(nèi)部導(dǎo)體安裝靠得太近時這種效應(yīng)會頻繁發(fā)生(也就是構(gòu)建了一個電容)。 |